171 research outputs found

    Hawking radiation in a two-component Bose-Einstein condensate

    Full text link
    We consider a simple realization of an event horizon in the flow of a one-dimensional two-component Bose-Einstein condensate. Such a condensate has two types of quasiparticles; In the system we study, one corresponds to density fluctuations and the other to polarization fluctuations. We treat the case where a horizon occurs only for one type of quasiparticles (the polarization ones). We study the one- and two-body signal associated to the analog of spontaneous Hawking radiation and demonstrate by explicit computation that it consists only in the emission of polarization waves. We discuss the experimental consequences of the present results in the domain of atomic Bose-Einstein condensates and also for the physics of exciton-polaritons in semiconductor microcavities

    Interference effects in the two-dimensional scattering of microcavity polaritons by an obstacle: phase dislocations and resonances

    Full text link
    We consider interference effects within the linear description of the scattering of two-dimensional microcavity polaritons by an obstacle. The polariton wave may exhibit phase dislocations created by the interference of the incident and the scattered fields. We describe these structures within the general framework of singular optics. We also discuss another type of interference effects appearing due to the formation of (quasi)resonances in the potential of a repulsive obstacle with sharp boundaries. We discuss the relevance of our approach for the description of recent experimental results and propose a criterion for evaluating the importance of nonlinear effects.Comment: 11 pages, 9 figure

    Nonlinear waves in coherently coupled Bose-Einstein condensates

    Full text link
    We consider a quasi-one-dimensional two-component Bose-Einstein condensate subject to a coherent coupling between its components, such as realized in spin-orbit coupled condensates. We study how nonlinearity modifies the dynamics of the elementary excitations. The spectrum has two branches which are affected in different ways. The upper branch experiences a modulational instability which is stabilized by a long wave-short wave resonance with the lower branch. The lower branch is stable. In the limit of weak nonlinearity and small dispersion it is described by a Korteweg-de Vries equation or by the Gardner equation, depending on the value of the parameters of the system

    Bogoliubov Theory of acoustic Hawking radiation in Bose-Einstein Condensates

    Full text link
    We apply the microscopic Bogoliubov theory of dilute Bose-Einstein condensates to analyze quantum and thermal fluctuations in a flowing atomic condensate in the presence of a sonic horizon. For the simplest case of a step-like horizon, closed-form analytical expressions are found for the spectral distribution of the analog Hawking radiation and for the density correlation function. The peculiar long-distance density correlations that appear as a consequence of the Hawking emission features turns out to be reinforced by a finite initial temperature of the condensate. The analytical results are in good quantitative agreement with first principle numerical calculations.Comment: 11 pages, 7 figure

    Polarization hydrodynamics in a one-dimensional polariton condensate

    Full text link
    We study the hydrodynamics of a nonresonantly-pumped polariton condensate in a quasi-one-dimensional quantum wire taking into account the spin degree of freedom. We clarify the relevance of the Landau criterion for superfluidity in this dissipative two-component system. Two Cherenkov-like critical velocities are identified corresponding to the opening of different channels of radiation: one of (damped) density fluctuations and another of (weakly damped) polarization fluctuations. We determine the drag force exerted onto an external obstacle and propose experimentally measurable consequences of the specific features of the fluctuations of polarization

    Wave pattern induced by a localized obstacle in the flow of a one-dimensional polariton condensate

    Full text link
    Motivated by recent experiments on generation of wave patterns by a polariton condensate incident on a localized obstacle, we study the characteristics of such flows under the condition that irreversible processes play a crucial role in the system. The dynamics of a non-resonantly pumped polariton condensate in a quasi-one-dimensional quantum wire is modeled by a Gross-Pitaevskii equation with additional phenomenological terms accounting for the dissipation and pumping processes. The response of the condensate flow to an external potential describing a localized obstacle is considered in the weak-perturbation limit and also in the nonlinear regime. The transition from a viscous drag to a regime of wave resistance is identified and studied in detail

    Dipole Oscillations of a Bose-Einstein Condensate in Presence of Defects and Disorder

    Full text link
    We consider dipole oscillations of a trapped dilute Bose-Einstein condensate in the presence of a scattering potential consisting either in a localized defect or in an extended disordered potential. In both cases the breaking of superfluidity and the damping of the oscillations are shown to be related to the appearance of a nonlinear dissipative flow. At supersonic velocities the flow becomes asymptotically dissipationless.Comment: 4 pages, 4 figure
    • …
    corecore